Numerical accuracy and efficiency in the propagation of epistemic and aleatory uncertainties
نویسندگان
چکیده
The need to differentiate between epistemic and aleatory uncertainty is now well admitted by the risk analysis community. One way to do so is to model aleatory uncertainty by classical probability distributions and epistemic uncertainty by means of possibility distributions, and then propagate them by their respective calculus. The result of this propagation is a random fuzzy variable. When dealing with complex models, the computational cost of such a propagation quickly becomes too high. In this paper, we propose a numerical approach, the RaFu method, whose aim is to determine an optimal numerical strategy so that computational costs are reduced to their minimum, while using the theoretical framework mentioned above. We also give some means to take account of the resulting numerical error. The benefits of the RaFu method are shown by comparisons with previous methodologies.
منابع مشابه
A Mixed Uncertainty Quantification Approach Using Evidence Theory and Stochastic Expansions
Uncertainty quantification (UQ) is the process of quantitative characterization and propagation of input uncertainties to the response measure of interest in experimental and computational models. The input uncertainties in computational models can be either aleatory, i.e., irreducible inherent variations, or epistemic, i.e., reducible variability which arises from lack of knowledge. Previously...
متن کاملRegional sensitivity analysis of aleatory and epistemic uncertainties on failure probability
To analyze the effects of specific regions of the aleatory and epistemic uncertain variables on the failure probability, a regional sensitivity analysis (RSA) technique called contribution to failure probability (CFP) plot is developed in this paper. This RSA technique can detect the important aleatory and epistemic uncertain variables, and also measure the contribution of specific regions of t...
متن کاملNumerical Sensitivity and Efficiency in the Treatment of Epistemic and Aleatory Uncertainty
Nowadays, the need to treat both epistemic and aleatory uncertainty in a unified framework is well recognized [1]. One method to do so is to mix probabilistic convolution (for aleatory uncertainty) and fuzzy calculus (for epistemic uncertainty). Existing propositions either concern simple models [2] or are computationally very costly [3] (a luxury not always affordable, especially in nuclear sa...
متن کاملUncertainty Analysis of the Adequacy Assessment Model of a Distributed Generation System
Due to the inherent aleatory uncertainties in renewable generators, the reliability/adequacy assessments of distributed generation (DG) systems have been particularly focused on the probabilistic modeling of random behaviors, given sufficient informative data. However, another type of uncertainty (epistemic uncertainty) must be accounted for in the modeling, due to incomplete knowledge of the p...
متن کاملA Spatial-Random-Process Based Multidisciplinary System Uncertainty Propagation Approach with Model Uncertainty
The performance of a multidisciplinary system is inevitably affected by various sources of uncertainties, usually categorized as aleatory (e.g. input variability) or epistemic (e.g. model uncertainty) uncertainty. In the framework of design under uncertainty, all sources of uncertainties should be aggregated to assess the uncertainty of system quantities of interest (QOIs). In a multidisciplina...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. General Systems
دوره 39 شماره
صفحات -
تاریخ انتشار 2010